go to top scroll for more

Projects


Projects: Projects for Investigator
Reference Number EP/J016039/1
Title Engineered bulk heterojunction inorganic:organic hybrid photovoltaics
Status Completed
Energy Categories Renewable Energy Sources(Solar Energy, Photovoltaics) 100%;
Research Types Basic and strategic applied research 100%
Science and Technology Fields PHYSICAL SCIENCES AND MATHEMATICS (Metallurgy and Materials) 100%
UKERC Cross Cutting Characterisation Not Cross-cutting 100%
Principal Investigator Dr A McLachlan
No email address given
Materials
Imperial College London
Award Type Standard
Funding Source EPSRC
Start Date 01 October 2012
End Date 30 September 2013
Duration 12 months
Total Grant Value £99,908
Industrial Sectors Chemicals
Region London
Programme NC : Physical Sciences
 
Investigators Principal Investigator Dr A McLachlan , Materials, Imperial College London (100.000%)
  Industrial Collaborator Project Contact , Merck Speciality Chemicals Ltd (0.000%)
Web Site
Objectives
Abstract The case for supporting clean, renewable technologies is strong with UK Government commitments to ensuring 15 % of our energy comes from renewable sources by 2020, this represents a seven fold increase in the market share for renewables in less than a decade. This target can only be achieved by implementing a combination of complementary solutions including biomass, wind, wave and solar. In particular solar energy harvesting has the potential to become competitive, in both economic and performance terms, if current limitations associated with next generation technologies can be overcome. In addition to environmental benefits there is the potential for significant economic development, recent analysis suggests that the entire renewable energy sector could support up to half a million jobs in the UK by 2020. The demand is present, evidenced by the increase in UK PV capacity from 10.9 Mw in 2005 to an estimated 26.5 Mw in 2009.Inorganic-organic hybrid photovoltaic (h-PV) devices are a realistic prospect for the long-term development of entirely solution processable, scalable devices on rigid and flexible substrates. The pairing of a metal oxide (TiO2, ZnO) with a conjugated polymer to form a hybrid device is an attractive combination of materials. For example, ZnO provides efficient electron mobility, effective light-scattering, is of low cost and can be formed in a wide variety of (nano) structures from aqueous solution. The absorbing, hole-transporting conjugated polymers, such as poly(3-hexylthiphene)(P3HT), support a wide variety of processing routes and exhibit some of the best charge transport of all organic semiconductors. However progress made towards realising such h-PV technologies has been slow. Reported power conversion efficiency (PCE) values are typically < 1%, with some more recent publications reporting 2%. This compares with reported efficiencies of > 8% for commercial organic-PVs.The nanostructured devices that will be prepared in this program will provide controlled bicontinuous networks for charge, and importantly will allow control of the polymer morphology - a parameter that has received little attention in h-PVs - although it is known to strongly influence exciton generation, free carrier transport and light absorption. This unique combination of materials and processing strategies presents an exciting opportunity for the development of h-PV devices that can overcome the current performance limitations by allowing control of the structural and morphological properties of the device not possible with other material combinations or processing techniques
Publications (none)
Final Report (none)
Added to Database 15/10/12